If a+b+c=9 and ab+bc+ca=26 then find a3+b3+c3-3abc
Answers
Answered by
1
Answer: a³+b³+c³-3abc = 27
Step-by-step explanation: Let us list what has been given to us:
a+b+c=9
ab+bc+ca=26
We shall use:
(a+b+c)² = a²+b²+2(ab+bc+ca)
Now let us substitute the values
(9)² = a²+b²+c²+2(26)
Therefore, 81-52 = a²+b²+c²
Therefore, a²+b²+c² = 29
Now let us use:
a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
Therefore, a³+b³+c³-3abc=(a+b+c)[(a²+b²+c²)-(ab+bc+ca)]
Now let us substitute a+b+c=9, ab+bc+ca=26 and a²+b²+c²=29
Therefore,
a³+b³+c³-3abc = 9[(29-26)]
=9×3
=27
Hope this helps!
Similar questions