Math, asked by shahidrazaansari1234, 9 months ago

if a+b+c=9 and ab +bc+can=40 find a square b square and c square​

Answers

Answered by Anonymous
6

Answer:

Hi there !!Given,a + b + c = 9ab + bc + ca = 40To find : a² + b² + c²The following expression matches to the algebraic identity (a + b + c)² = a² + b² + c² + 2a…....

Answered by Anonymous
12

\red\bigstar Correct Question:

  • If a + b + c = 9 and ab + bc + ca = 40. Then find a² + b² + c².

\red\bigstarAnswer:

  • a² + b² + c² = 1

\red\bigstarGiven:

  • a + b + c = 9
  • ab + bc + ca = 40

\red\bigstarTo find:

  • a² + b² + c²

\red\bigstar Solution:

We know that,

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

\implies( a + b + c )² = a² + b² + c² + 2(ab + bc + ca)

Now, by substituting the values of ( a + b + c ) and ab + bc + ca, we get:

( 9 )² = a² + b² + c² + 2( 40)

( \because a + b + c = 9 and ab + bc + ca = 40)

\implies 81 = a² + b² + c² + 80

\implies a² + b² + c² + 80 = 81

\implies a² + b² + c² = 81 - 80

\implies\boxed{a² \:+ \:b²\: +\: c²\: =\:1}

\thereforea² + b² + c² = 1

Similar questions