If a, b, c and d are four positive real numbers such that abcd = 1, what is the minimum value of
(1 + a)(1 + b)(1 + c)(1 + d)?
(1) 4 (2) 1 (3) 16 (4) 18
Answers
Answered by
4
Answer is 18
Hope it will help you.
Hope it will help you.
Answered by
25
Answer:
16
Step-by-step explanation:
(1+a)(1+b)(1+c)(1+d)
= (1 + ab + a + b)(1 + cd + c + d)
= 1 + cd + c + d + ab + abcd + abc + abd + a + acd + ac + ad + b + bcd + bc + bd
= 1 + abcd + a + b + c + d + ab + ac + bc + bd + ad + cd + abc + abd + acd + bcd
abcd = 1
so abc + d ≥2 , abd + c ≥2 , bcd + a ≥2 , acd + b ≥2
≥ 1 + 1 + 2 + 2 + 2 + 2 + ab + ac + bc + bd + ad + cd
abcd = 1
so ab + cd ≥ 2 , ac + bd ≥ 2 , ad + bc ≥ 2
≥ 10 + 2 +2 + 2
≥ 16
So 16 is the right answer
Verification let say a , b , c , d all are = 1
abcd = 1
(1+a)(1+b)(1+c)(1+d) = 2 * 2* 2* 2 = 16
Similar questions