Math, asked by kannanchellappan2012, 1 year ago

if a,b,c are all non zero and a+b+c=0 prove that a^2/bc+b^2/ca+c^2/ab=3​

Answers

Answered by rishu6845
5

Answer:

ans is three plzzzz give me brainliest ans and thanks if like follow me

Attachments:
Answered by Anonymous
11

\bf{\large{\underline{\underline{GIVEN:-}}}}

a,b,c are all non zero

a+b+c=0

\bf{\large{\underline{\underline{REQUIRED \: TO \: PROVE:-}}}}

 \tt  \dfrac{ {a}^{2} }{bc} +  \dfrac{ {b}^{2} }{ca} +  \dfrac{ {c}^{2} }{ab} = 3

\bf{\large{\underline{\underline{PROOF:-}}}}

 \tt  \dfrac{ {a}^{2} }{bc} +  \dfrac{ {b}^{2} }{ca} +  \dfrac{ {c}^{2} }{ab} = 3

Consider LHS

 \tt   = \dfrac{ {a}^{2} }{bc} +  \dfrac{ {b}^{2} }{ca} +  \dfrac{ {c}^{2} }{ab}

Taking Least Common Multiple for the above terms

 \tt   = \dfrac{ {a}^{2}(a)}{bc(a)} +  \dfrac{ {b}^{2}(b)}{ca(b)} +  \dfrac{ {c}^{2}(c)}{ab(c)}

 \tt   = \dfrac{ {a}^{3}}{abc} +  \dfrac{ {b}^{3}}{abc} +  \dfrac{ {c}^{3}}{abc}

 \tt  = \dfrac{ {a}^{3} +  {b}^{3} +  {c}^{3}  }{abc}

 \boxed{ \large{ \sf when \: x + y + z = 0 \implies {x}^{3} +  {y}^{3} +  {z}^{3} = 3xyz}}

And it is given a + b + c = 0

So a³ + b³ + c³ = 3abc

substitute a³ + b³ + c³ in the above fraction as 3abc

 \tt   = \dfrac{3abc}{abc}

 \tt   = \dfrac{3 \cancel{abc}}{ \cancel{abc}}

 \tt   = \dfrac{3}{1}

 \tt  = 3

 \tt = RHS \: i.e \: 3

Hence Proved

Similar questions