Math, asked by ghagjashanpreet, 1 year ago

If a, b, c are all non zero and a + b+ c = 0, prove that a²/bc+b²/ca+²/=3

Answers

Answered by LovelyG
9

Correct question: If a, b, c are all non zero and a + b + c = 0, prove that a²/bc + b²/ca + c²/ab = 3.

Answer:

We know that,

If x + y + z = 0, then x³ + y³ + z³ = 3xyz.

 \rm  \frac{ {a}^{2} }{bc}  +  \frac{ {b}^{2} }{ca}  +  \frac{ {c}^{2} }{ab}  \\  \\ \implies \rm  \frac{a {}^{3} + b {}^{3} + c {}^{3} }{abc}  \\  \\ \implies \rm  \frac{3abc}{abc}  \\  \\ \implies 3

Hence, it is proved.

\rule{300}{2}

\large{\underline{\underline{\mathfrak{\heartsuit \: Algebraic \: Identity : \: \heartsuit}}}}

  • (a + b)³ = a³ + b³ + 3ab(a + b)
  • (a - b)³ = a³ - b³ - 3ab(a - b)
  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • (x + a)(x + b) = x² + (a + b)x + ab

Answered by Anonymous
2

Correct question:

If a, b, c are all non zero and a + b+ c = 0, prove that a²/bc + b²/ca+ c²/ab = 3

Answer

Let's simplify the given equation first:

 \frac{ {a}^{2} }{bc}  +  \frac{ {b}^{2} }{ca}  +  \frac{ {c}^{2} }{ab}  \\  \\  =  >  \frac{ {a}^{3}  +  {b}^{3}  +  {c}^{3} }{abc}

We know an identity:

When: a + b + c = 0;

 {a}^{3} +   {b}^{3} +   {c}^{3}  = 3abc

Applying the same here:

\frac{ {a}^{3}  +  {b}^{3}  +  {c}^{3} }{abc}   \\  \\  =  >  \frac{3abc}{abc}  \\  \\  =  > 3

Similar questions