Math, asked by PragyaTbia, 1 year ago

If A, B, C are angles in a triangle, then prove that cos A + cos B - cos C = -1 + 4cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}.

Answers

Answered by hukam0685
3

Answer:


Step-by-step explanation:

If A, B, C are angles in a triangle,than A+B+C=π

as we have to prove

cos\:A+cos\:B-cos\:C=-1+4cos\:\frac{A}{2}cos\:\frac{B}{2}cos\:\frac{C}{2}\\

we have

=cos\:A+cos\:B-cos\:C\\\\\\=2cos(\frac{A+B}{2})cos(\frac{A-B}{2})-(1-2sin^{2}\frac{C}{2}) \\\\

since cos 2A=1-2sin²A

so

=2cos(\frac{A+B}{2})cos(\frac{A-B}{2})-1+2sin^{2}\frac{C}{2})\\\\=2cos(\frac{\pi}{2}-\frac{C}{2})cos(\frac{A-B}{2})-1+2sin^{2}\frac{C}{2})\\\\=2sin(\frac{C}{2})cos(\frac{A-B}{2})-1+2sin^{2}\frac{C}{2})\\\\=2sin(\frac{C}{2})[cos(\frac{A-B}{2})+sin\frac{C}{2})]-1\\\\\\=2sin(\frac{C}{2})[cos(\frac{A-B}{2})+sin(\frac{\pi}{2}-\frac{A+B}{2})]-1\\\\\\=2sin(\frac{C}{2})[cos(\frac{A-B}{2})+cos\frac{A+B}{2})]-1\\\\\\

=2sin(\frac{C}{2})[2cos(\frac{A}{2})+cos\frac{B}{2})]-1\\\\\\=4sin(\frac{C}{2})cos(\frac{A}{2})+cos\frac{B}{2})-1\\\\\\=-1+4sin(\frac{C}{2})cos(\frac{A}{2})+cos\frac{B}{2})\\\\

hence proved

Similar questions