Math, asked by kumarkeshav9931, 6 months ago

If A,B,C are angles of triangles . Cot(B+C / 2) then is equal to-​

Answers

Answered by Anonymous
40

 \large \underline \bold{Solution}:-

\sf{A \: , \: B \: and \: C \: are \: the \: angles \: of \: a \: triangle \: ABC .}

 \small \underline \bold{We \: know \: that}-

\sf{The \: sum \: of \: all \: three \: angles \: of \: a \: triangle \: is \: 180.}

\sf{So \: ,}

 \small \underline \bold{Step \: I}:-

\: \: \: \: \: \sf{A + B + C = 180}°

 \small \underline \bold{Step \: II}:-

\: \: \: \: \: \sf{(B + C) = 180 - A}

 \small \underline \bold{Step \: III}:-

\: \: \: \: \: \sf{\dfrac{(B + C)}{2} = \dfrac{(180 - A)}{2}}

\: \: \: \: \: \sf{\dfrac{(B + C)}{2} = (90 - \dfrac{A}{2})}

 \small \underline \bold{Step \: IV}:-

\: \: \: \: \: \sf{Cot\dfrac{(B + C)}{2} = Cot(90 - \dfrac{A}{2})}

 \large \underline \bold{We \: know \: that}-

\: \: \: \: \: \sf{Cot(90 - x) = tanx}

\sf{So \: ,}

 \small \underline \bold{Step \: V}:-

\: \: \: \: \: \sf{Cot\dfrac{(B + C)}{2} = tan\dfrac{A}{2}}

Similar questions