Math, asked by AnumeyaChopra655, 1 year ago

If a, b, c are in A.P. and a, mb, c are in G.P then prove that a, m^2 b, c are
in H.P

Answers

Answered by medhavimahendra
9
if a, b, c are in ap then 2b=a+c
if a , mb , c  are in gp  then m²b²=ac
using these relation you can get the ans

Answered by ssanskriti1107
0

Answer:

Since,   m^{2} b = \frac{2ac}{a+c}    ,   a,m^{2} , c are in H.P

Step-by-step explanation:

Step 1:

As  a,b,c   are in A.P,  \implies  2b = a + c  

                                       \implies  b = \frac{ a + c  }{2}            ..........(i)

As  a, mb, c  are in G.P, \implies  m^{2} b^{2} = ac

                                     \implies  m^{2}  b. [\frac{a+c}{2} ]  = ac  ........(Putting value of b from (i) )

                                     \implies m^{2} b = \frac{2ac}{a+c}

Since,   m^{2} b = \frac{2ac}{a+c}    ,   a,m^{2} , c are in H.P

#SPJ2

Similar questions