Math, asked by Anonymous, 1 year ago

If a, b, c are in AP , show that

 \sf \frac{1}{ \sqrt{b} +   \sqrt{c}} , \frac{1}{ \sqrt{c} +  \sqrt{a}  } , \frac{1}{ \sqrt{a}  +  \sqrt{b} }  \: are \: in \: AP. \\

Moderator's account .

No spam .​

Answers

Answered by Anonymous
132
If a, b and c are in AP,

=) b - a = c - b

=) b + b = c + a

=) 2b = a + c - - - - 1)

To show :

 \sf \frac{1}{ \sqrt{b} + \sqrt{c}} , \frac{1}{ \sqrt{c} + \sqrt{a} } , \frac{1}{ \sqrt{a} + \sqrt{b} } \: are \: in \: AP. \\ will be in AP.

Then,

 \frac{1}{ \sqrt{c} + \sqrt{a} } \\ -  \sf \frac{1}{ \sqrt{b} + \sqrt{c}} \\ =  \frac{1}{ \sqrt{a} + \sqrt{b} } \\ -  \frac{1}{ \sqrt{c} + \sqrt{a} } \\

 \tt if \: \frac{ (\sqrt{b} - \sqrt{a}) }{( \sqrt{c} + \sqrt{a})( \sqrt{b} + \sqrt{c}) } = \frac{ (\sqrt{c} - \sqrt{b} )}{( \sqrt{a} + \sqrt{b})( \sqrt{c} + \sqrt{a}) } . \\ \\ \tt \implies \frac{( \sqrt{b} - \sqrt{a}) }{( \sqrt{b} + \sqrt{c} )} = \frac{( \sqrt{c} - \sqrt{b} )}{( \sqrt{a} + \sqrt{b} )} . \\ \\ \tt \implies \sqrt{b} - \sqrt{a} \times \sqrt{a} + \sqrt{b} = \sqrt{c} - \sqrt{b} \times \sqrt{c} + \sqrt{b} .

=) b - a = c - b

=) b + b = c + a

=) 2b = a + c,

This is a verification of eq1.

So if a, b and c are in AP, then

 \sf \frac{1}{ \sqrt{b} + \sqrt{c}} , \frac{1}{ \sqrt{c} + \sqrt{a} } , \frac{1}{ \sqrt{a} + \sqrt{b} } \: are \: in \: AP. \\

Anonymous: Great answer, thanks
shadowsabers03: We can only take b - a = c - b as the first equation too.
Answered by fanbruhh
40

 \huge \bf{ \red{ \mid{ \overline{ \underline{ANSWER}}} \mid}}

→ Since a , b , c are in AP , we have

› 2b = (a + c) ..............(i)

Now,

 \sf \frac{1}{ \sqrt{b} + \sqrt{c}} , \frac{1}{ \sqrt{c} + \sqrt{a} } , \frac{1}{ \sqrt{a} + \sqrt{b} } \: are \: in \: AP. \\

will be in AP

 \sf if \:  \frac{1}{( \sqrt{c} +   \sqrt{a}  )}  -  \frac{1}{ (\sqrt{b}  +  \sqrt{c} )}  \\  =  \frac{1}{ (\sqrt{a}  +  \sqrt{b} )}  -  \frac{1}{( \sqrt{c}  +  \sqrt{a} )}  \\  \\  \sf \: i.e. \: if \:  \frac{ (\sqrt{ b} -  \sqrt{a})  }{( \sqrt{c}  +  \sqrt{a} )( \sqrt{b}  +  \sqrt{c} )}  \\   =  \frac{( \sqrt{ c}  -  \sqrt{b} )}{( \sqrt{a} +  \sqrt{b} )( \sqrt{c}   +  \sqrt{a) } }  \\  \\  \sf \: i.e.  \: if \frac{( \sqrt{b}  -  \sqrt{a} )}{( \sqrt{b}  +  \sqrt{c} )}  =  \frac{( \sqrt{c}  -  \sqrt{b}) }{( \sqrt{a} +  \sqrt{b})  }  \\  \\  \sf i.e \: if \: b - a = c - b \\  \\  \sf \: i.e \: if \: 2b \:  = a + c \: from \: (i)

•°• a,b,c are in AP

 \sf \frac{1}{ \sqrt{b} + \sqrt{c}} , \frac{1}{ \sqrt{c} + \sqrt{a} } , \frac{1}{ \sqrt{a} + \sqrt{b} } \: are \: in \: AP. \\

are in AP.


Anonymous: Great answer, thanks
fanbruhh: thanks
Similar questions