Math, asked by lillyvince6246, 10 months ago

If a b c are in ap then the roots of the equation ax^2+bx+c =0 has

Answers

Answered by Anonymous
2

HERE IS UR ANSWER DEAR,

a,b,c are in AP,then

second term -first term = third term -second term

t2 - t1 = t3 - t2

here,

  • t1 = a
  • t2 = b
  • t3 = c

so,

b-a = c-b

2b. = a+c

b = a+c/2

given equation is

ax² +bx +c= 0

let \:  \alpha and \:  \beta  \: be \: the \: roots \: of \\  \: the \: equation

sum \: of \: the \: roots \:  =  \alpha  +  \beta  =   \frac{ - b}{a}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \alpha  +  \beta   =  \frac{ - (a + c)}{2a}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \alpha  +  \beta   =  \frac{ - a - c}{2a}

 \:  \:  \:  \:  \:  \alpha  +  \beta  = ( \frac{ - a}{2a} ) \:  +  \: ( \frac{ - c}{2a} )

by comparing LHS and RHS,

 \alpha  =  \frac{ - a}{2a}  :  \beta  =  \frac{ - c}{2a}

product \: of \: the \: roots \:  =  \alpha  \beta  =  \frac{c}{a}

 &lt;marquee behaviour-move&gt;&lt;font</p><p></p><p>color="green yellow"&gt;&lt;h1&gt;#MISS</p><p>PHENOMENOL❤❤&lt;/ ht&gt;&lt;/marquee&gt;

Similar questions