Math, asked by Itsmeaditya0137, 4 months ago

if a,b,c are in continued proportion, prove that a^4+a^2^b^2 +b^4/b^4+b^2c^2+c^4=a^2/c^2

Answers

Answered by Anonymous
6

Answer:

ANSWER

Here

b

a

=

c

b

∴b

2

=ac

i)LHS=

b

2

+bc+c

2

a

2

+ab+b

2

=

ac+bc+c

2

a

2

+ab+ac

[Putting b

2

=ac]

=

c(a+b+c)

a(a+b+c)

=

c

a

=RHS

ii)LHS=

b

4

+b

2

c

2

+c

4

a

4

+a

2

b

2

+b

4

=

(ac)

2

+b

2

c

2

+c

4

a

4

+a

2

b

2

+(ac)

2

=

a

2

c

2

+b

2

c

2

+c

4

a

4

+a

2

b

2

+a

2

c

2

=

c

2

(a

2

+b

2

+c

2

)

a

2

(a

2

+b

2

+c

2

)

=

c

2

a

2

=RHS

Similar questions