If A,B,C are interior angles of a triangle ABC, then prove that:i) sec(A+C/2) = cosec(B/2) ii) tan(B+C/2) = cot (A/2)
Answers
Answered by
33
☺☺ HERE IS YOUR ANSWER ☺☺
__________________________________
1) A + B + C = 180
A + C = 180 - B
(divide both by 2)
A + C/2 = 90 - B/2
Sec(A+C/2) = Sec(90 - B/2)
sec(A+C/2) = Cosec(B/2)
........cosec(90-theta) = sec (theta).
Sec(A+C/2) = Cosec(B/2) ..............(Proved)
==============================================
2) A+B+C = 180
B+C = 180-A
(divide both by 2)
B+C/2 = 90 - A/2
Tan(B+C/2) = Tan(90-A/2).
.....Tan(90-theta) = cot (theta)
Tan(B+C/2) = Cot (A/2). .............(Proved)
__________________________________
☺ HOPE IT HELPS YOU ☺
THANKS..........
__________________________________
1) A + B + C = 180
A + C = 180 - B
(divide both by 2)
A + C/2 = 90 - B/2
Sec(A+C/2) = Sec(90 - B/2)
sec(A+C/2) = Cosec(B/2)
........cosec(90-theta) = sec (theta).
Sec(A+C/2) = Cosec(B/2) ..............(Proved)
==============================================
2) A+B+C = 180
B+C = 180-A
(divide both by 2)
B+C/2 = 90 - A/2
Tan(B+C/2) = Tan(90-A/2).
.....Tan(90-theta) = cot (theta)
Tan(B+C/2) = Cot (A/2). .............(Proved)
__________________________________
☺ HOPE IT HELPS YOU ☺
THANKS..........
Anonymous:
yr, ek hi thanks hua!! :(
Answered by
0
1) A + B + C = 180
A + C = 180 - B
(divide both by 2)
A + C/2 = 90 - B/2
Sec(A+C/2) = Sec(90 - B/2)
sec(A+C/2) = Cosec(B/2)
........cosec(90-theta) = sec (theta).
Sec(A+C/2) = Cosec(B/2) ..............(Proved)
==============================================
2) A+B+C = 180
B+C = 180-A
(divide both by 2)
B+C/2 = 90 - A/2
Tan(B+C/2) = Tan(90-A/2).
.....Tan(90-theta) = cot (theta)
Tan(B+C/2) = Cot (A/2). .............(Proved)
__________________________________
☺ HOPE IT HELPS YOU ☺
THANKS..........
Similar questions