Math, asked by viswa3, 1 year ago

if A B C are positive acute angle and sin (B+C-A)=cos (C+A-B)=tan (A+B-C)=1 then A B C are

Answers

Answered by bhavyaskk
23
As sin (B+C-A)=1; cos (C+A-B)=1 and tan (A+B-C)=1; that implies B+C-A=90 degrees ..........eqn 1 C+A-B=0 degrees .............eqn 2 A+B-C=45 degrees ...........eqn 3 Solving the three equations we get A=22.5 degrees; B=67.5 degrees and C=45 degrees.
Answered by tanvigupta426
0

Answer:

The answer is A=22.50^{\circ}, \quad B=67.50^{\circ} and \quad C=45^{\circ}.

Step-by-step explanation:

Given:

If A B C is a positive acute angle and

sin (B+C-A)=cos (C+A-B)=tan (A+B-C)=1.

To find:

The values of A, B, and C.

Step 1

Let, $\sin (B+C-A)=1

\Longrightarrow B+C-A

=\sin ^{1}(1)=90^{\circ}$.......................(1)

$\cos (C+A-B)=1

\Longrightarrow C+A-B

$=\cos ^{-1}(1)=0^{\circ} .....................(2)

$\tan (A+B-C)=1

\Longrightarrow A+B-C

=\tan ^{-1}(1)=45^{\circ}$............................(3)

Step 2

By (1), we get

$A=B+C-90^{\circ} \quad$

Putting this result in (2), then

C+(B+C-90)-B = 0^{0}  \\

\Longrightarrow 2 C-90^{\circ} \\

\Longrightarrow 2 C=90^{\circ} \\

\Longrightarrow C=45^{\circ}

Hence, C=45^{\circ}.

Step 3

Putting the value of $\mathrm{C}$ in (1)

B+45^{\circ}-A=90^{\circ} $$

\Longrightarrow B-A=45^{\circ}....................(4)

Putting the value of  $\mathrm{C}$ in (3)

A+B-45^{\circ}=45^{\circ}$$

\Longrightarrow A+B=90^{\circ}.....................(5)

Step 4

equating the values $(4)+(5)$ then

&2 B=135^{\circ}

\Longrightarrow B=67.50^{\circ} \\

&A+B=90^{\circ}

\Longrightarrow A+67.50^{\circ}=90^{\circ} \\

&\Longrightarrow A=22.50^{\circ} \\

Therefore, A=22.50^{\circ}

\quad B=67.50^{\circ}

and \quad C=45^{\circ}.

#SPJ2

Similar questions