Math, asked by keerthanareddy3012, 7 months ago

If a, b, c are positive real numbers such that a+b-c/c=a-b+c/b=-a+b+c/a, find the value of (a+b) (b+c) (c+a) /abc.​

Answers

Answered by nickcoolnarwade
0

Answer:

jhhhjjoooooooooookkjiiii

Answered by Anonymous
2

\blue {■□■□■□■□■□■□■□■□■□■□■}</p><p>

 \sf{let}

\sf \dfrac{a + b + c}{c} = \dfrac{a - b + c}{b} = \dfrac{ - a + b + c}{a} = x

\sf \dfrac{a + b - c}{c} = x , \dfrac{a - b + c}{b} = x \: , \dfrac{ - a + b + c}{a} = x

\sf \dfrac{a + b - c}{c} = x , \dfrac{a - b + c}{b} = x \: , \dfrac{ - a + b + c}{a} = x

\green {━━━━━━━━━━━━━━━}

\sf ⇰by \: adding \: we \: get

\begin{gathered}\sf a + \cancel b - \cancel c = cx \\ \sf \cancel a - b + c = bx \\ \sf - \cancel a + b + c = ax \\ \sf a + b + c = cx + bx + ax\end{gathered}

\begin{gathered}\sf ➱ a + b + c = x(a + b + c) \\ \sf \:\dfrac {\cancel a + \cancel b + \cancel c}{ \cancel a + \cancel b + \cancel c} = x\end{gathered}

\sf ⠀⠀ ⠀ ⠀⠀ ⠀⠀x = 1⠀⠀⠀⠀⠀⠀⠀x=1

\orange {━━━━━━━━━━━━━━━}

\begin{gathered}\sf ⇰by \: substituting \: the \: values \: of \\ \sf x \: in \: equation \: (1)\end{gathered} </p><p>

\begin{gathered}\sf ➯a + b - c = c(1) \\ \: a - b + c = b(1) \\ \: - a + b + c = a(1) \\ \sf a + b = x \: \\ a + c = 2b \: \\ b + c = 2a \\ \sf \: (a + b)(b + c)(c + a) = 2c \times 2b \times 2a\end{gathered}

\red {━━━━━━━━━━━━━━━}

\sf ⇰divide \: both \: sides \: by \: abc

\sf ⇒ \dfrac{(a +b )( b+ c)(c +a )}{abc} = \dfrac{8\cancel a\cancel b\cancel c}{\cancel a \cancel b \cancel c}</p><p>

\sf ⇒ \dfrac{(a + b)(b + c)( c+a )}{abc} = 8

\blue {■□■□■□■□■□■□■□■□■□■□■}

Similar questions