Math, asked by atanzeera, 1 month ago

if A,B,C are the angles of a triangle, show that cot B = cot (A + 2B + C)​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

  • A,B,C are the angles of a triangle.

We know that,

  • Sum of interior angles of a triangle is 180°.

\bf\implies \:A + B + C = 180\degree

Now,

Consider,

\rm :\longmapsto\:cot(A + 2B + C)

 \rm \:  =  \:  \: \:cot(A + B + B + C)

 \rm \:  =  \:  \: \:cot(A + B + C + B)

 \rm \:  =  \:  \: cot(180\degree + B)

 \rm \:  =  \:  \: cot(90\degree \times 2 + B)

 \rm \:  =  \:  \: cotB

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

Sign of Trigonometric ratios in Quadrants

sin (90°-θ)  =  cos θ

cos (90°-θ)  =  sin θ

tan (90°-θ)  =  cot θ

csc (90°-θ)  =  sec θ

sec (90°-θ)  =  csc θ

cot (90°-θ)  =  tan θ

sin (90°+θ)  =  cos θ

cos (90°+θ)  =  -sin θ

tan (90°+θ)  =  -cot θ

csc (90°+θ)  =  sec θ

sec (90°+θ)  =  -csc θ

cot (90°+θ)  =  -tan θ

sin (180°-θ)  =  sin θ

cos (180°-θ)  =  -cos θ

tan (180°-θ)  =  -tan θ

csc (180°-θ)  =  csc θ

sec (180°-θ)  =  -sec θ

cot (180°-θ)  =  -cot θ

sin (180°+θ)  =  -sin θ

cos (180°+θ)  =  -cos θ

tan (180°+θ)  =  tan θ

csc (180°+θ)  =  -csc θ

sec (180°+θ)  =  -sec θ

cot (180°+θ)  =  cot θ

sin (270°-θ)  =  -cos θ

cos (270°-θ)  =  -sin θ

tan (270°-θ)  =  cot θ

csc (270°-θ)  =  -sec θ

sec (270°-θ)  =  -csc θ

cot (270°-θ)  =  tan θ

sin (270°+θ)  =  -cos θ

cos (270°+θ)  =  sin θ

tan (270°+θ)  =  -cot θ

csc (270°+θ)  =  -sec θ

sec (270°+θ)  =  cos θ

cot (270°+θ)  =  -tan θ

Similar questions