if a,b,c be the first ,third and nth terms respectively of an AP prove that the sum to n terms is (c+a)/2+(c+a)(c-a)/b-a
Answers
Answered by
5
Answer:
Given that a = first term
and
b = T3 = a + 2d
and
c = Tn = a + ( n - 1)d.
Now, T3 - T1 = b - a
⇒ 2d = b - a.
d = ( b -a) / 2.
Substitute d in nth term, we get
c = a + ( n - 1) d
⇒ (c - a) = (n - 1) ( b -a) / 2.
⇒ 2(c - a) / ( b -a) = (n - 1)
∴ n = ( b + 2c - 3a) / ( b - a).
Sum of n terms
Sn = ( n / 2) [ a + l ]
⇒ Sn = ( ( b + 2c - 3a) / 2( b - a).) [ a + c ] [ substitute n and l ]
⇒ Sn = ( b + 2c - 3a)( a + c ) / 2( b - a).
⇒ Sn = ( c + a ) / 2( b - a)[ b - a + 2( c -a) ]
Sn = [(c + a) / 2 + (c2- a2) / (b-a)].
Hence proved.
Similar questions