Math, asked by mejoker6382, 11 months ago

If,
a, b, c belongs to R+
a + b + c = 18

find max value of a²b³c⁴?​

Answers

Answered by ItSdHrUvSiNgH
9

Step-by-step explanation:

\huge\bf{\mid{\overline{\underline{ANSWER:-}}\mid}}

 \huge \bold{GIVEN:-}  \\  \\ a,b,c \:  \:  \in \:  \: R ^{ + }  \\  \\ a + b + c = 18 \\  \\   \large \red{To \:  find:-} \\  \\  {a}^{2}  {b}^{3}  {c}^{4}  =    ?  \: (max) \\  \\

a + b + c = 18 \\  \\  \frac{a}{2}  +  \frac{a}{2}  +  \frac{b}{3}  +  \frac{b}{3}  +  \frac{b}{ 3}  + \frac{c}{4}   + \frac{c}{4}   +  \frac{c}{4}  +  \frac{c}{4}  = 18 \\  \\

 A. M \geq G. M \\ \\

 \frac{\frac{a}{2}  +  \frac{a}{2}  +  \frac{b}{3}  +  \frac{b}{3}  +  \frac{b}{ 3}  + \frac{c}{4}   + \frac{c}{4}   +  \frac{c}{4}  +  \frac{c}{4} }{9}    \geq  \\  \\ \sqrt[9]{\frac{a}{2}   \times   \frac{a}{2}   \times   \frac{b}{3}   \times   \frac{b}{3}   \times  \frac{b}{ 3}   \times  \frac{c}{4}    \times  \frac{c}{4}    \times  \frac{c}{4}   \times  \frac{c}{4}  }  \\  \\  {2}^{9}    \geq( \frac{ {a}^{2} }{4}  \times  \frac{ {b}^{3} }{27}  \times  \frac{ {c}^{4} }{ {4}^{4} } ) \\  \\  \huge \boxed{ {a}^{2}  \times  {b}^{3}  \times  {c}^{4}   \leq  {2}^{19}  \times  {3}^{2} }

# BAL

# Answer with quality...

Similar questions