Math, asked by vvsaikumar123, 9 months ago

If a,b,c,d are four vectors, then show that (axb).(cxd) + (bxc).(axd) + (cxa).(bxd)=0

Answers

Answered by MaheswariS
7

\textbf{Given:}

\mathsf{\overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d}\;are\;four\;vectors}

\textbf{To prove:}

\mathsf{(\overrightarrow{a}{\times}\overrightarrow{b}).(\overrightarrow{c}{\times}\overrightarrow{d})+(\overrightarrow{b}{\times}\overrightarrowc).(\overrightarrow{a}{\times}\overrightarrow{d})+(\overrightarrow{c}{\times}\overrightarrow{a}).(\overrightarrow{b}{\times}\overrightarrow{d})=0}

\textbf{Solution:}

\underline{\textsf{Concept:}}

\mathsf{(\overrightarrow{a}{\times}\overrightarrow{b}).(\overrightarrow{c}{\times}\overrightarrow{d})=\left|\begin{array}{cc}\overrightarrow{a}.\overrightarrow{c}&\overrightarrow{a}.\overrightarrow{d}\\\overrightarrow{b}.\overrightarrow{c}&\overrightarrow{b}.\overrightarrow{d}\end{array}\right|}

\mathsf{Consider}

\mathsf{(\overrightarrow{a}{\times}\overrightarrow{b}).(\overrightarrow{c}{\times}\overrightarrow{d})+(\overrightarrow{b}{\times}\overrightarrowc).(\overrightarrow{a}{\times}\overrightarrow{d})+(\overrightarrow{c}{\times}\overrightarrow{a}).(\overrightarrow{b}{\times}\overrightarrow{d})=0}

\mathsf{=\left|\begin{array}{cc}\overrightarrow{a}.\overrightarrow{c}&\overrightarrow{a}.\overrightarrow{d}\\\overrightarrow{b}.\overrightarrow{c}&\overrightarrow{b}.\overrightarrow{d}\end{array}\right|}+\mathsf{\left|\begin{array}{cc}\overrightarrow{b}.\overrightarrow{a}&\overrightarrow{b}.\overrightarrow{d}\\\overrightarrow{c}.\overrightarrow{a}&\overrightarrow{c}.\overrightarrow{d}\end{array}\right|}+\mathsf{\left|\begin{array}{cc}\overrightarrow{c}.\overrightarrow{b}&\overrightarrow{c}.\overrightarrow{d}\\\overrightarrow{a}.\overrightarrow{b}&\overrightarrow{a}.\overrightarrow{d}\end{array}\right|}

\mathsf{=\left|\begin{array}{cc}\overrightarrow{a}.\overrightarrow{c}&\overrightarrow{a}.\overrightarrow{d}\\\overrightarrow{b}.\overrightarrow{c}&\overrightarrow{b}.\overrightarrow{d}\end{array}\right|}+\mathsf{\left|\begin{array}{cc}\overrightarrow{a}.\overrightarrow{b}&\overrightarrow{b}.\overrightarrow{d}\\\overrightarrow{a}.\overrightarrow{c}&\overrightarrow{c}.\overrightarrow{d}\end{array}\right|}+\mathsf{\left|\begin{array}{cc}\overrightarrow{b}.\overrightarrow{c}&\overrightarrow{c}.\overrightarrow{d}\\\overrightarrow{a}.\overrightarrow{b}&\overrightarrow{a}.\overrightarrow{d}\end{array}\right|}

\mathsf{=(\overrightarrow{a}.\overrightarrow{c})(\overrightarrow{b}.\overrightarrow{d})-(\overrightarrow{a}.\overrightarrow{d})(\overrightarrow{b}.\overrightarrow{c})}+\mathsf{(\overrightarrow{a}.\overrightarrow{b})(\overrightarrow{c}.\overrightarrow{d})-(\overrightarrow{a}.\overrightarrow{c})(\overrightarrow{b}.\overrightarrow{d})}

+\mathsf{(\overrightarrow{a}.\overrightarrow{d})(\overrightarrow{b}.\overrightarrow{c})-(\overrightarrow{a}.\overrightarrow{b})(\overrightarrow{c}.\overrightarrow{d})}

\mathsf{=0}

Similar questions