Math, asked by kikoneon54, 1 month ago

If a,b,c,d are in continued proportion, prove that:
(a+b)(b+c)-(a+c)(b+d)=(b-c)²​

Answers

Answered by pratibhamane002
0

n Figure line AB || line CD and line PQ is the

transversal. Ray PT and ray QT are bisectors of

BPQ and PQD respective

Step-by-step explanation:

is this brilliant answer or not

Answered by LEGENDARYCONQUEROR
0

Answer:

here is your Solution

 Given a,b,c,d are in continued proportion

⟹ba=cb=dc=k(say)

⟹c=dk,b=ck=k2d,a=bk=k3d

LHS=(a+d)(b+c)−(a+c)(b+d)=(k3d+d)(k2d+kd)−(k3d+kd)(k2d+d)

                                                                      =d2(k5+k2+k4+k−k5−2k3−k)

                                                                      =k2d2(k−1)2=(k2d−kd)2=(b−c)2=RHS

Hence Proved

Step-by-step explanation:

makr me brianlist if It helps

Similar questions