if a + b + c equal to zero then find the value of (a+b+c)^3 + (c+a-b)^3 + (b+c-a)^3
Answers
Answered by
0
x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)
If x + y + z = 0,
x3+y3+z3−3xyz=0=>x3+y3+z3=3xyzx3+y3+z3−3xyz=0=>x3+y3+z3=3xyz
Assume:
x = a + b - c = -2c
y = a + c - b = -2b
z = b + c - a = -2a
(Since a+b+c=0, a+b=−c, b+c=−a, a+c=−b)
We see x + y + z = a + b + c =0.
(a+b−c)3+(c+a−b)3+(b+c−a)3=x3+y3+z3=3xyz(a+b−c)3+(c+a−b)3+(b+c−a)3=x3+y3+z3=3xyz
3xyz=3∗(−2c)∗(−2b)∗(−2a)=−24abc3xyz=3∗(−2c)∗(−2b)∗(−2a)=−24abc
Hope this helped!
If x + y + z = 0,
x3+y3+z3−3xyz=0=>x3+y3+z3=3xyzx3+y3+z3−3xyz=0=>x3+y3+z3=3xyz
Assume:
x = a + b - c = -2c
y = a + c - b = -2b
z = b + c - a = -2a
(Since a+b+c=0, a+b=−c, b+c=−a, a+c=−b)
We see x + y + z = a + b + c =0.
(a+b−c)3+(c+a−b)3+(b+c−a)3=x3+y3+z3=3xyz(a+b−c)3+(c+a−b)3+(b+c−a)3=x3+y3+z3=3xyz
3xyz=3∗(−2c)∗(−2b)∗(−2a)=−24abc3xyz=3∗(−2c)∗(−2b)∗(−2a)=−24abc
Hope this helped!
therandommanas:
bro it is a+b+c whole cube
Answered by
0
it might be 0
as if it is multiplied by 3 the answer remains 0
Similar questions
Science,
7 months ago
English,
7 months ago
Political Science,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago