Math, asked by dnithin9666, 8 months ago

If a + b + c is equals to 16 and a square + b square + c square is equal to 90 then find the value of a cube plus b cube plus c cube - 3abc

Answers

Answered by TrickYwriTer
22

Step-by-step explanation:

Given -

a + b + c = 16

a² + b² + c² = 90

To Find -

  • Value of a³ + b³ + c³ - 3abc

As we know that :-

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

→ (16)² = 90 + 2(ab + bc + ca)

→ 256 - 90 = -2(-ab - bc - ca)

→ 166 = -2(-ab - bc - ca)

-83 = -ab - bc - ca

Now,

As we know that :-

a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)

→ (16)(90 - 83)

→ 16 × 7

→ 112

Hence,

The value of + + - 3abc is 112.

Answered by Anonymous
23

\large{\underline{\bf{\green{Given:-}}}}

✰ a + b + c = 16

✰ a²+ b² + c² = 90

\large{\underline{\bf{\green{To\:Find:-}}}}

✰ we need to find the Value of a³ + b³ + c³ - 3abc.

\huge{\underline{\bf{\red{Solution:-}}}}

we know that

(a +b+c)²

(a +b+c)² = a² + b²+ c²+ 2ab + 2bc + 2ca

: \implies   \sf\:(16)² = 90 +2(ab +bc + ca)

: \implies   \sf\:256 - 90 = -2(- ab - bc - ca)

: \implies   \sf\:166 = -2(- ab - bc - ca)

: \implies   \sf\: 166/-2 = (- ab - bc - ca)

: \implies   \sf\: -83 = (- ab - bc - ca)

Now,

we know that:-

a³ + b³ + c³ - 3abc

= ( a + b + c) (a² + b² + c²- ab - bc - ca )

: \implies   \sf\:16 × (90-83)

: \implies   \sf\:16 × 7

: \implies   \sf\: 112.

So,

a³ + b³ + c³ - 3abc = 112

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions