If a + b + c is equals to 16 and a square + b square + c square is equal to 90 then find the value of a cube plus b cube plus c cube - 3abc
Answers
Step-by-step explanation:
Given -
a + b + c = 16
a² + b² + c² = 90
To Find -
- Value of a³ + b³ + c³ - 3abc
As we know that :-
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
→ (16)² = 90 + 2(ab + bc + ca)
→ 256 - 90 = -2(-ab - bc - ca)
→ 166 = -2(-ab - bc - ca)
→ -83 = -ab - bc - ca
Now,
As we know that :-
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
→ (16)(90 - 83)
→ 16 × 7
→ 112
Hence,
The value of a³ + b³ + c³ - 3abc is 112.
✰ a + b + c = 16
✰ a²+ b² + c² = 90
✰ we need to find the Value of a³ + b³ + c³ - 3abc.
we know that
(a +b+c)²
(a +b+c)² = a² + b²+ c²+ 2ab + 2bc + 2ca
(16)² = 90 +2(ab +bc + ca)
256 - 90 = -2(- ab - bc - ca)
166 = -2(- ab - bc - ca)
166/-2 = (- ab - bc - ca)
-83 = (- ab - bc - ca)
Now,
we know that:-
a³ + b³ + c³ - 3abc
= ( a + b + c) (a² + b² + c²- ab - bc - ca )
16 × (90-83)
16 × 7
112.
So,
a³ + b³ + c³ - 3abc = 112
━━━━━━━━━━━━━━━━━━━━━━━━━