if A+B+C=pie
prove that-
CotA/2+CotB/2+CotC/2 = CotA/2CotB/2CotC/2
Answers
Answered by
2
HINT:
A2+B2=π2−C2A2+B2=π2−C2
cot(A2+B2)=cot(π2−C2)=tanC2=1cotC2cot(A2+B2)=cot(π2−C2)=tanC2=1cotC2
Apply cot(x+y)=cotxcoty−1cotx+coty
A2+B2=π2−C2A2+B2=π2−C2
cot(A2+B2)=cot(π2−C2)=tanC2=1cotC2cot(A2+B2)=cot(π2−C2)=tanC2=1cotC2
Apply cot(x+y)=cotxcoty−1cotx+coty
Similar questions