If A+B+C=π , prove that sin 2A + sin2B + sin2C =4sinA*sinB*sinC.
Answers
Answered by
3
Answer:
Step-by-step explanation:
Given, A+B+C=π
L.H.S:
sin 2A + sin2B + sin2C
= 2Sin(A+B)Cos(A-B) + Sin2C (∵ SinA+SinB = 2Sin(A+B/2)Cos(A-B/2))
= 2Sin(180-C)Cos(A-B) + 2SinCCosC
= 2SinCCos(A-B)+ 2SinCCos(180-(A+B)) (∵Cos(180 - (A+B)) = - Cos(A+B))
= 2SinC(Cos(A-B) - Cos(A+B)) (∵CosA - CosB = - 2Sin(A+B/2)Sin(A-B/2))
= 2SinC(-2SinA.Sin(-B))
= 2SinC(2SinASinB)
= 4SinASinBSinC.
= R.H.S
Hence Proved.
Similar questions