If A + B + C = and if none of A, B, C is an odd multiple of , then prove that
(a). cot A + cot B + cot C = cot A cot B cot C
(b). tan A tan B + tan B tan C + tan C tan A= 1 and hence show that
(c). = 2
Answers
Answered by
20
(ii) A + B + C = π/2
tan(A + B + C) = tanπ/2
or, (tanA + tanB + tanC - tanA.tanB. tanC)/(1 - tanA.tanB - tanB.tanC - tanC.tanA) = tanπ/2
or, (tanA + tanB + tanC - tanA.tanB. tanC)/(1 - tanA.tanB - tanB.tanC - tanC.tanA) = 1/0
or, 1 - tanA.tanB - tanB.tanC - tanC.tanA = 0 ......(1)
or, 1 = tanA.tanB + tanB.tanC + tanC. tanA [hence proved]
(i) again, 1 = tanA.tanB + tanB.tanC + tanC. tanA
or, 1 = 1/cotA.cotB + 1/cotB.cotC + 1/cotC.cotA
or, 1 = cotC/cotA.cotB.cotC + cotA/cotA.cotB.cotC + cotB/cotA.cotB.cotC
or, cotA.cotB. cotC = cotA + cotB + cotC [hence proved]
(iii) = cos(B + C)/cosB.cosC + cos(C + A)/cosC.cosA + cos(A + B)/cosA.cosB
= (cosB.cosC - sinB.sinC)/cosB.cosC + (cosC.cosA - sinC.sinA)/cosC.cosA + (cosA.cosB - sinA.sinB)/cosA.cosB
= 1 - tanB.tanC + 1 - tanC.tanA + 1 - tanA.tanB
= 2 + (1 - tanA.tanB - tanB.tanC - tanC.tanA)
from equation (1),
= 2 + 0 = 2 = RHS
tan(A + B + C) = tanπ/2
or, (tanA + tanB + tanC - tanA.tanB. tanC)/(1 - tanA.tanB - tanB.tanC - tanC.tanA) = tanπ/2
or, (tanA + tanB + tanC - tanA.tanB. tanC)/(1 - tanA.tanB - tanB.tanC - tanC.tanA) = 1/0
or, 1 - tanA.tanB - tanB.tanC - tanC.tanA = 0 ......(1)
or, 1 = tanA.tanB + tanB.tanC + tanC. tanA [hence proved]
(i) again, 1 = tanA.tanB + tanB.tanC + tanC. tanA
or, 1 = 1/cotA.cotB + 1/cotB.cotC + 1/cotC.cotA
or, 1 = cotC/cotA.cotB.cotC + cotA/cotA.cotB.cotC + cotB/cotA.cotB.cotC
or, cotA.cotB. cotC = cotA + cotB + cotC [hence proved]
(iii) = cos(B + C)/cosB.cosC + cos(C + A)/cosC.cosA + cos(A + B)/cosA.cosB
= (cosB.cosC - sinB.sinC)/cosB.cosC + (cosC.cosA - sinC.sinA)/cosC.cosA + (cosA.cosB - sinA.sinB)/cosA.cosB
= 1 - tanB.tanC + 1 - tanC.tanA + 1 - tanA.tanB
= 2 + (1 - tanA.tanB - tanB.tanC - tanC.tanA)
from equation (1),
= 2 + 0 = 2 = RHS
Answered by
15
HELLO DEAR,
( a ) 1 = tanA.tanB + tanB.tanC + tanC. tanA
=> 1 = 1/cotA.cotB + 1/cotB.cotC + 1/cotC.cotA
=> 1 = cotC/cotA.cotB.cotC + cotA/cotA.cotB.cotC + cotB/cotA.cotB.cotC
=> cotA.cotB. cotC = cotA + cotB + cotC
( b ) A + B + C = π/2
tan(A + B + C) = tanπ/2
=> (tanA + tanB + tanC - tanA.tanB. tanC)/(1 - tanA.tanB - tanB.tanC - tanC.tanA) = tanπ/2
=> (tanA + tanB + tanC - tanA.tanB. tanC)/(1 - tanA.tanB - tanB.tanC - tanC.tanA) = 1/0
=> 1 - tanA.tanB - tanB.tanC - tanC.tanA = 0 --------( 1 )
=> 1 = tanA.tanB + tanB.tanC + tanC. tanA
( c ) = cos(B + C)/cosB.cosC + cos(C + A)/cosC.cosA + cos(A + B)/cosA.cosB
=> (cosB.cosC - sinB.sinC)/cosB.cosC + (cosC.cosA - sinC.sinA)/cosC.cosA + (cosA.cosB - sinA.sinB)/cosA.cosB
=> 1 - tanB.tanC + 1 - tanC.tanA + 1 - tanA.tanB
=> 2 + (1 - tanA.tanB - tanB.tanC - tanC.tanA)
from -------- ( 1 )
=> 2 + 0 = 2
I HOPE IT'S HELP YOU DEAR,
THANKS
( a ) 1 = tanA.tanB + tanB.tanC + tanC. tanA
=> 1 = 1/cotA.cotB + 1/cotB.cotC + 1/cotC.cotA
=> 1 = cotC/cotA.cotB.cotC + cotA/cotA.cotB.cotC + cotB/cotA.cotB.cotC
=> cotA.cotB. cotC = cotA + cotB + cotC
( b ) A + B + C = π/2
tan(A + B + C) = tanπ/2
=> (tanA + tanB + tanC - tanA.tanB. tanC)/(1 - tanA.tanB - tanB.tanC - tanC.tanA) = tanπ/2
=> (tanA + tanB + tanC - tanA.tanB. tanC)/(1 - tanA.tanB - tanB.tanC - tanC.tanA) = 1/0
=> 1 - tanA.tanB - tanB.tanC - tanC.tanA = 0 --------( 1 )
=> 1 = tanA.tanB + tanB.tanC + tanC. tanA
( c ) = cos(B + C)/cosB.cosC + cos(C + A)/cosC.cosA + cos(A + B)/cosA.cosB
=> (cosB.cosC - sinB.sinC)/cosB.cosC + (cosC.cosA - sinC.sinA)/cosC.cosA + (cosA.cosB - sinA.sinB)/cosA.cosB
=> 1 - tanB.tanC + 1 - tanC.tanA + 1 - tanA.tanB
=> 2 + (1 - tanA.tanB - tanB.tanC - tanC.tanA)
from -------- ( 1 )
=> 2 + 0 = 2
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions