If tan α - tan β = m, cot α - cot β = n, then prove that cot(α - β) =
Answers
Answered by
24
we have to prove :
given,
....(1)
now, LHS =
=
=
= { 1 + (-m/n)}/(m)
= 1/m + (-m/n)/m
= 1/m - 1/n = RHS
given,
....(1)
now, LHS =
=
=
= { 1 + (-m/n)}/(m)
= 1/m + (-m/n)/m
= 1/m - 1/n = RHS
Answered by
8
HELLO DEAR,
GIVEN:-
tanα - tanβ = m---------( 1 )
cotα - cotβ = n
=> 1/tanα - 1/tanβ = n
=> (tanβ - tanα)/(tanα.tanβ) = n
=> -m/(tanα.tanβ) = n [From----( 1 ) ]
=> -m/n = tanα.tanβ----------( 2 )
now, cot(α - β) = 1/tan(α - β)
=> 1/[(tanα - tanβ)/(1 + tanα.tanβ)]
=> 1/[ {m}/{1 + (-m/n)}]
=> 1/[mn/(n - m)]
=> (n - m)/(mn)
=> 1/m - 1/n
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:-
tanα - tanβ = m---------( 1 )
cotα - cotβ = n
=> 1/tanα - 1/tanβ = n
=> (tanβ - tanα)/(tanα.tanβ) = n
=> -m/(tanα.tanβ) = n [From----( 1 ) ]
=> -m/n = tanα.tanβ----------( 2 )
now, cot(α - β) = 1/tan(α - β)
=> 1/[(tanα - tanβ)/(1 + tanα.tanβ)]
=> 1/[ {m}/{1 + (-m/n)}]
=> 1/[mn/(n - m)]
=> (n - m)/(mn)
=> 1/m - 1/n
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions