If A - B = , then show that (1 - tan A)(1 + tan B) = 2.
Answers
Answered by
0
A - B = 3π/4
or, tan(A - B) = tan(3π/4)
or, (tanA - tanB)/(1 + tanA .tanB) = tan(π - π/4)
or, (tanA - tanB)/(1 + tanA. tanB) = -tan(π/4)
or, (tanA - tanB)/(1 + tanA. tanB) = -1
or, tanA - tanB = -1 - tanA. tanB
or, tanA - tanB + 1 + tanA. tanB = 0
or, tanA - tanB + 1 + tanA.tanB -2 = -2
or, tanA - 1 - tanB + tanA. tanB = -2
or, 1(tanA - 1) + tanB(tanA - 1) = -2
or, (tanA - 1)(1 + tanB) = -2
hence, (1 - tanA)(1 + tanB) = 2
or, tan(A - B) = tan(3π/4)
or, (tanA - tanB)/(1 + tanA .tanB) = tan(π - π/4)
or, (tanA - tanB)/(1 + tanA. tanB) = -tan(π/4)
or, (tanA - tanB)/(1 + tanA. tanB) = -1
or, tanA - tanB = -1 - tanA. tanB
or, tanA - tanB + 1 + tanA. tanB = 0
or, tanA - tanB + 1 + tanA.tanB -2 = -2
or, tanA - 1 - tanB + tanA. tanB = -2
or, 1(tanA - 1) + tanB(tanA - 1) = -2
or, (tanA - 1)(1 + tanB) = -2
hence, (1 - tanA)(1 + tanB) = 2
Answered by
0
HELLO DEAR,
GIVEN:- A - B = 3π/4
taking tangent both side,
=> tan(A - B) = tan(3π/4)
=> (tanA - tanB)/(1 + tanA .tanB) = tan(π - π/4)
=> (tanA - tanB)/(1 + tanA. tanB) = -tan(π/4)
=> (tanA - tanB)/(1 + tanA. tanB) = -1
=> tanA - tanB = -1 - tanA. tanB
=> tanA - tanB + 1 + tanA. tanB = 0
=> tanA - tanB + 1 + tanA.tanB -2 = -2
=> tanA - 1 - tanB + tanA. tanB = -2
=> 1(tanA - 1) + tanB(tanA - 1) = -2
=> (tanA - 1)(1 + tanB) = -2
Hence, (1 - tanA)(1 + tanB) = 2
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:- A - B = 3π/4
taking tangent both side,
=> tan(A - B) = tan(3π/4)
=> (tanA - tanB)/(1 + tanA .tanB) = tan(π - π/4)
=> (tanA - tanB)/(1 + tanA. tanB) = -tan(π/4)
=> (tanA - tanB)/(1 + tanA. tanB) = -1
=> tanA - tanB = -1 - tanA. tanB
=> tanA - tanB + 1 + tanA. tanB = 0
=> tanA - tanB + 1 + tanA.tanB -2 = -2
=> tanA - 1 - tanB + tanA. tanB = -2
=> 1(tanA - 1) + tanB(tanA - 1) = -2
=> (tanA - 1)(1 + tanB) = -2
Hence, (1 - tanA)(1 + tanB) = 2
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions