If A + B + C=π
then find
the Value
sin2A+sin2B+sin2C
Answers
Answered by
0
Answer:
Please mark me
Step-by-step explanation:
Click here to get an answer to your question ✍️ If A + B + C = π , then prove that sin2A + sin2B + sin2C = 4sin Asin Bsin C
Answered by
0
Answer: 4sinAsinBsinC
Solution:-
A+B+C = TT(pi) = 180degree
& sin2A+sin2B = 2sin(A+B)cos(A-B)
So, sin2A + sin2B + sin2C = 2sin(A+B)cos(A-B)+2sinCcosC
=2sinCcos(A-B) + 2sinCcosC
=2sinC(cos (A-B) - cos(A+B))
=2sinC2sinAsinB
=4sinAsinBsinC
Similar questions