If (A+B)=pi/4 then the value of (cotA+1)(cotB+1) is?
Answers
Answered by
3
(cotA +1)(cotB +1) = ???
given
( A + B) =π/4
take both sides tan
tan(A + B) = tanπ/4 =1
(tanA + tanB)/( 1- tanA. tanB) = 1
tanA +tanB = 1- tanA.tanB
tanA +tanB +tanA.tanB = 1
tanA + tanA. tanB+ tanB + 1 =2
(1 + tanA)(1 + tanB) = 2
if you want
(cotA +1)(cotB+1) =??
then , we can say numerical value of this
this is only , trigonometric term
e.g (cotA+1)(cotB+1)=2cotA.cotB
given
( A + B) =π/4
take both sides tan
tan(A + B) = tanπ/4 =1
(tanA + tanB)/( 1- tanA. tanB) = 1
tanA +tanB = 1- tanA.tanB
tanA +tanB +tanA.tanB = 1
tanA + tanA. tanB+ tanB + 1 =2
(1 + tanA)(1 + tanB) = 2
if you want
(cotA +1)(cotB+1) =??
then , we can say numerical value of this
this is only , trigonometric term
e.g (cotA+1)(cotB+1)=2cotA.cotB
karkibhim88:
Yes sir, okay
Answered by
5
(A+B)=45
tan(A+B)=tan45
tanA+tanB/1-tanAtanB=1
tanA+tanB=1-tanAtanB
tanA+tanB+tanAtanB=1
adding 1 on both sides
tanA+tanB+tan AtanB+1=2
(1+tanA)(1+tanB)=2
1+1/cotA)(1+1/cotB)=2
(cotA+1)(cotB+1)=2cotAcotB
(cotA-1)(cotB-1)=2 actuallly
tan(A+B)=tan45
tanA+tanB/1-tanAtanB=1
tanA+tanB=1-tanAtanB
tanA+tanB+tanAtanB=1
adding 1 on both sides
tanA+tanB+tan AtanB+1=2
(1+tanA)(1+tanB)=2
1+1/cotA)(1+1/cotB)=2
(cotA+1)(cotB+1)=2cotAcotB
(cotA-1)(cotB-1)=2 actuallly
Similar questions