Math, asked by srinadh12, 4 months ago

If A+B= pie/4then prove that (1+TanA)(1+Tan B) = 2​

Answers

Answered by Anonymous
18

 \huge \sf \underline \red{Answer : }

\sf \underline \green{ \therefore \: (1 + tanA)(1 + tanB) = 2}

 \huge \sf \underline \pink{Solution : }

 \:  \:  \:  \:  \:  \sf \underline{Given \:A+B =  \dfrac{\pi}{4}}

 \sf \underline{Now \:  take \: the \: tan \: on \: both \: sides \: we \: get}

 \sf \implies{ \tan(A+B) = tan \dfrac{\pi}{4}}

\sf \implies{ tanA +  \dfrac{tanB}{1 - tanA \: tanB = 1}}

 \sf \implies{tanA + tanB = 1 - tanA \: tanB}

 \sf \implies{tanA + tanB + tanA \: tanB = 1}

 \sf\underline{Now  \: Add  \: 1 \: both \: sides \: we \: get}

 \sf \implies{1 + tanA \:  + tanB + tanA \: tanB = 2}

 \sf \implies{1(1 + tanA) + tanB(1 + tanA) = 2}

 \sf \implies{(1 + tanA)(1 + tanB) = 2}

 \sf \underline \red{ \therefore \: (1 + tanA)(1 + tanB) = 2}

Answered by Anonymous
0

If A+B= pie/4then prove that (1+TanA)(1+Tan B) = 2

2

Similar questions