If a,b,y are acute angles such that cos a=tan b,cos b=tan y,cos y=tan a ..find the value of (2sin y+1)^2
Answers
Answer:
Correct option is
A
7998
Given
cosx=tany⋯(1)
cosy=tanz⋯(2)
cosz=tanx⋯(3)
Let x=y=z
⟹cosx=tanx
⟹cosx=
cosx
sinx
⟹sinx=cos
2
x
⟹sinx=1−sin
2
x
⟹sin
2
x+sinx−1=0
⟹sinx=
2
−1±
1+4
⟹sinx=
2
−1±
5
⟹sinx=2sin18
∘
⟹1234sinx+1342sinx+1423sinx
⟹1234(2sin18)+1342(2sin18)+1423(2sin18)
⟹7998sin18
⟹k=7998
Answer:
The value of (2sin y + 1)² is 5.
Step-by-step explanation:
Given,
that a, b, and y are acute angles.
cos a=tan b,cos b=tan y,cos y=tan a
To find,
The value of (2sin y+1)^2
Assumption,
Let the angles a, b, and y be equal
i.e. a = b = y
Calculation,
As cos a = tan b
⇒ cos a = tan a
⇒ cos a = sin a/cos a (As tanA = sinA/cosA )
⇒ cos² a = sin a
⇒ 1 - sin² a = sin a (sin² A + cos² A =1)
⇒ sin² a + sin a - 1 = 0
⇒ Now the value of (2sin y + 1)² = (2sin a + 1)²
⇒ (-1 ± √5 +1)²
⇒ 5
Therefore, the value of (2sin y + 1)² is 5.
#SPJ2