Math, asked by Satyam0107, 2 months ago

If A be any square matrix of order 3×3 and |A| = 5, then find the value of |adj.(adj.A)|​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Let us first derive an expression for |adj(adjA)|

Let us consider a square matrix A of order n × n.

We know that,

\rm :\longmapsto\:A(adjA) =  |A| I_n

Replace A by adjA, we get

\rm :\longmapsto\:adjA\bigg(adj(adjA) \bigg)  =  |adjA| I_n

\rm :\longmapsto\:adjA\bigg(adj(adjA) \bigg)  =   { |A| }^{n - 1}  I_n

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \because \: \boxed{ \blue{ \bf \: |adjA|  =  { |A| }^{n - 1}}}

Pre-multiply by A on both sides, we get

\rm :\longmapsto\:AadjA\bigg(adj(adjA) \bigg)  =   A{ |A| }^{n - 1}  I_n

\rm :\longmapsto\: |A|I_n \bigg(adj(adjA) \bigg)  ={ |A| }^{n - 1}A

\rm :\longmapsto\:  \bigg(adj(adjA) \bigg)  ={ |A| }^{n - 2}A

So, by taking determinant on both sides, we get

\rm :\longmapsto\: |adj(adjA)|  =  | { |A| }^{n - 2}A |

\rm :\longmapsto\: |adj(adjA)|  =  { |A| }^{n(n - 2)} |A|

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \because \: \boxed{ \blue{ \bf \: |k \: A|  =  {k}^{n} \:  |A| }}

\rm :\longmapsto\: |adj(adjA)|  =  { |A| }^{n(n - 2) + 1}

\rm :\longmapsto\: |adj(adjA)|  =  { |A| }^{ {n}^{2}  -  2n  + 1}

\rm :\longmapsto\: |adj(adjA)|  =  { |A| }^{ {(n - 1)}^{2}}

\rm :\implies\:\boxed{ \red{ \bf \:\: |adj(adjA)|  =  { |A| }^{ {(n - 1)}^{2}}}}

According to statement, we have

  • Order of matrix, n = 3

and

  • |A| = 5

So,

\rm :\longmapsto\:{ \bf \:\: |adj(adjA)|  =  {5}^{ {(3 - 1)}^{2}} =  {5}^{4}  = 625}

Additional Information :-

\boxed{ \blue{ \bf \: |I|  = 1}}

\boxed{ \blue{ \bf \: |adjA|  =  { |A| }^{n - 1} }}

\boxed{ \blue{ \bf \: |kA|  =  {k}^{n}  |A| }}

\boxed{ \blue{ \bf \: |AB|  =  |A|  |B| }}

\boxed{ \blue{ \bf \: | {A}^{T} |  =  |A|}}

\boxed{ \blue{ \bf \: | {A}^{ - 1} | = \dfrac{1}{ |A| }}}

\boxed{ \blue{ \bf \: |A {A}^{ - 1} | = 1}}

\boxed{ \blue{ \bf \: | {A}^{T}  {A}^{ - 1} | = 1}}

Similar questions