Math, asked by Anonymous, 11 months ago

If A be the sum of the odd terms and B the sum of the even terms in the expansion of {(x+a)}^{n}, prove that

{A}^{2}-{B}^{2}={(x^2-a^2)}^{n}


❌❌NO SPAMMING❌❌​

Answers

Answered by Sweetums
22

See the reference... ........

Attachments:

Anonymous: r u really solving on own ^^" ✔️✔️
Sweetums: yes i have all done this✔
Anonymous: great job ✔️✔️❤️"
Sweetums: thanku
Sweetums: s...o....h...n..a...❤
Answered by generalRd
9

ANSWER

Here we have →

(x+a)^{n} ={ }^{n}C_{0}x^{n} + { }^{n}C_{1}x^{n-1}a^{1} + { }^{n}C_{2} x^{n-2}a^{2} ........+{ }^{n}C_{n}a^{n}  --------(i)

(x-a)^{n} ={ }^{n}C_{0}x^{n} - { }^{n}C_{1}x^{n-1}a^{1} + { }^{n}C_{2} x^{n-2}a^{2} ........+(-1)^{n}\:{ }^{n} C_{n}a^{n}  --------(ii)

Adding (i) and (ii) we get →

(x+a)^{n} + (x-a)^{n} =2[{ } ^{n}C_{0}x^{n} + (-1)^{n}{ }^{n} C_{n}a^{n} +....]

\implies \dfrac{ (x+a)^{n} + (x-a)^{n} }{2} = A[let]

Similarly, on subtracting (ii) from (i) we get →

\implies \dfrac{ (x+a)^{n} - (x-a)^{n} }{2} = { }^{n}C_{1}x^{n-1}a^{1} +  { }^{n}C_{3}x^{n-3}a^{3} +.....

\implies \dfrac{ (x+a)^{n} - (x-a)^{n} }{2} =B[Let]

Now, we know that →

(A² - B²) = (A + B)(A - B)

\implies A^{2} - B^{2} = [ \dfrac{ (x+a)^{n} - (x-a)^{n} }{2}+ \dfrac{ (x+a)^{n} + (x-a)^{n} }{2}][ \dfrac{ (x+a)^{n} + (x-a)^{n} }{2} - \dfrac{ (x+a)^{n} - (x-a)^{n} }{2}]

\implies A^{2} - B^{2} = [ \dfrac{ (x+a)^{n} - (x-a)^{n} + (x+a)^{n} + (x-a)^{n} }{2}][ \dfrac{ (x+a)^{n} + (x-a)^{n} - (x+a)^{n} + (x-a)^{n} }{2}]

\implies A^{2} - B^{2}  =(x + a)^{n} {(x - a)^{n} }

\implies A^{2} - B^{2} = (x^{2} - a^{2})^{n}

HENCE PROVED.

Similar questions