If |a+bi|=1, prove that (1+b+ai)/(1+b-ai)=b+ai
Answers
Answered by
2
Given |a+bi|=1
⇒ = 1
⇒ a² + b² = 1
To prove,
(1 + b + ai)/(1 + b - ai) = b + ai
Taking L.H.S expression.
Multiplying and dividing with (1 + b + ai)
(1 + b + ai)²/[(1 + b + ai)(1 + b - ai)] = b + ai
[(1 + b)² + (ai)² + 2(1 + b)(ai)]/[(1 + b)² - (ai)²] = b + ai
[1 + b² + 2b - a² + 2ai + 2abi]/[(1 + b² + 2b + a²)] = b + ai
[(1 + b² - a² + 2b) + i(2a + 2ab)]/[(1 + a² + b² + 2b)] = b + ai
Writing 1 as (a² + b²) in numerator and (a² + b²) as 1 in denominator
[(a² + b² + b² - a² + 2b) + i(2a + 2ab)]/[(1 + 1 + 2b)] = b + ai
[(2b² + 2b) + i(2a + 2ab)]/(2 + 2b) = b + ai
[2b(b + 1) + 2ai(b + 1)]/[2(b + 1)] = b + ai
[2(b+1)(b + ai)]/(2(b+1)) = b + ai
Eliminating 2(b + 1) in numerator and denominator.
b + ai = b + ai
Hence proved.
Similar questions