If a bike with a rider having a total mass of 63 kg brakes and reduces its velocity from 8.5 m/s to 0 m/s in 3 second. What is the magnitude of the braking force?
Answers
Answered by
16
Explanation:
m = 63 kg
Vo = 8.5 m/s
Vf = 0 m/s
t = 3 s
a = (Vf - Vo)/t
a = (0 m/s - 8.5 m/s)/3s
a = (-8.5 m/s)/3s
a = -17/6 m/s²
there is a decceleration that took place.
F = m×|a|
F = 63 kg × |-17/6 m/s²|
F = 178.5 kg m/s² ANSWER
Answered by
1
The magnitude of the braking force will be 178.29 N
The initial velocity of the bike is (u) = 8.5 m/s
The final velocity of the bike is (v) = 0 m/s
Time required to reduce the speed is (t) = 3 s
From the equation of one directional motion, we get,
If deceleration is = a, then,
a = (u-v)/t
∴ a = (8.5-0)/3 m/s²
⇒ a = 2.83 m/s²
Now, the total mass (m) of the bike and the rider is = 63 Kg
∴ The braking force, F = m×a
∴ F = 63 × 2.83 N
⇒ F = 178.29 N
So, the magnitude of the braking force is 178.29 N.
Similar questions