Math, asked by kritikaa945, 18 days ago

if a, bita are the roots of the equation x² - p(x+1) - C =0, then(a+1) (bita +1) =

Answers

Answered by sandipsagare8588
5

Answer:

Step-by-step explanation:

If α,β are the roots of x  

2

−p(x+1)+C=0⇒x  

2

−p x +C−p=0 then  

α+β=p and

α.β=C−p

Hence

(α+1)(β+1)  

=αβ+(α+β)+1

=C−p+(p)+1

=C+1.

Answered by Badboy330
173

Hii, let's Start.

 \rm\dag\large{\underline{\underline{Question:}}}

if a, bita are the roots of the equation x² - p(x+1) - C =0, then(a+1) (bita +1) = ??

\rm\dag\large{\underline{\underline{Given:}}}

\tt\large{ {x}^{2} \:  - \:  p(x  + 1) \:   -  \: c \: } \:  =  \: 0

\rm\dag\large{\underline{\underline{Soluation:}}}

\tt\large{ { \: x}^{2}  \: -  \: p(x + 1) \:  -  \: c \:   } = 0

\tt \longmapsto\large{ \:  {x}^{2}  \:  -  \: px \:  -  \: p \:  - c \:  =  \: 0}

\tt\longmapsto\large{{x}^{2} \:  - px \:  -  \: ( p + c) =  \: 0  }

\rm \bf \bigstar\large \green{ \:  \alpha +  \beta \:  =  \: -  \: p ( - \frac{ p}{1})  }

\rm \bf\rightarrow\large \green{ \alpha \:  +  \beta \:  = p} \:  \:  \:  \:  \:  \longrightarrow \: (i)

\rm\bf\bigstar\large \pink{ \:  \alpha \beta \:  =  \:  - ( { - \frac{p + c}{1}}) \:  }

\rm\bf \rightarrow\large \pink{  \:  \alpha \beta \:  =  - (p + c)} \:    \:  \:  \longrightarrow(ii)

\rm\large{Now,we  \: find \: ( \alpha +  1)( \beta + 1)}\: ,

\rm\large{ (\alpha +  1)( \beta +  1)}

\tt\large \longrightarrow{1 \:  +  \:  \beta \:  +   \alpha  \: +  \alpha \beta}

\tt\large \longrightarrow{1 \:  +  \:  p \:  -  (p + c)}

\tt\large \longrightarrow{1 \:  +  \: p \:  -  \:  p \:  - c}

\tt\large \longrightarrow \red{1 \:   -   \:C}

\rm{Hence, \:value \: of \:( \alpha  +  1 ) \: ( \beta + 1) \: is \: 1 - C} \: .

 \rule{300px}{ \: 4ex}

Similar questions