if a chord of a circle of radius 10cm is a tangent to inner circle of radius 8cm , both circles being concentric, then find the length of chord 10 12 14 18
Answers
Answered by
1
Answer:
In the mentioned circle,
O is the centre and AO =BO = Radius = 10 cm
AB is a chord which subtents 90
o
at centre O, i.e., ∠AOB=90
o
(i)
Area of minor segment APB (Shaded region) = Area of Sector AOB - Area of △AOB
=(
4
π×10×10
)−(0.5×10×10)
=78.5−50
=28.5cm
2
(ii)
Area of Major sector = Area of circle - Area of Sector AOB
= (π×10×10)−(
4
π×10×10
)
=314−78.5
=235.5cm
2
Similar questions