If a coa teta - b sin teta = c , prove that ( a sin teta + b coa teta ) = +root a² + b² - c² , -root a²+b²-c².
Answers
Answered by
8
Hey !!
Given : a cos ¢ - b sin ¢ = c
Now , ( a cos ¢ - b sin ¢)² + b² ( sin ² ¢ + cos ² ¢ ) = a² ( cos ²¢ + sin²¢ ) + b² ( sin²¢ + cos ²¢ ) = a²+b² .
( a cos¢ - b sin ¢ )² + ( a sin¢ + b cos ¢ )² = a² + b².
= c² + ( a sin ¢ + b cos ¢ )² = a² + b² .
=> ( a sin ¢ + b cos¢ ) = +- √a² + b² - c².
Given : a cos ¢ - b sin ¢ = c
Now , ( a cos ¢ - b sin ¢)² + b² ( sin ² ¢ + cos ² ¢ ) = a² ( cos ²¢ + sin²¢ ) + b² ( sin²¢ + cos ²¢ ) = a²+b² .
( a cos¢ - b sin ¢ )² + ( a sin¢ + b cos ¢ )² = a² + b².
= c² + ( a sin ¢ + b cos ¢ )² = a² + b² .
=> ( a sin ¢ + b cos¢ ) = +- √a² + b² - c².
Answered by
0
chcyyxucuyxxxxxf hey TTG hb
we it's o
we it's o
Similar questions
Computer Science,
7 months ago
Math,
7 months ago
Math,
1 year ago
English,
1 year ago
Math,
1 year ago