Math, asked by ahslove8853, 1 year ago

If a cone of height 8 m has a curved surface area of 188.4m^3 then find the radius of its base

Answers

Answered by BEJOICE
1

curved \:  \: surface \:  \: area \\ \pi \times r \times  \sqrt{ {r}^{2} +  {h}^{2}  }  = 188.4 \\ r \times  \sqrt{ {r}^{2}  +  {8}^{2} }  =  \frac{188.4}{\pi}  = 60 \\  {r}^{2} ( {r}^{2}  + 64) =  {60}^{2}  = 3600 \\  {r}^{4}  + 64 {r}^{2}  - 3600 = 0 \\ ( {r}^{2}  + 100)( {r}^{2}  - 36) = 0 \\  {r}^{2}  =  - 100 \:  \: or \:  \: 36 \\  - ve \:  \: value \:  \: is \:  \: not \:  \: admissible \\  {r}^{2}  = 36 \\ radius \:  \: r = 6 \: m
Answered by jkshahlic
0

Answer:

CSA of a cone = πSR = 188.4 m^2

S = 188.4/(3.14xR) = 60/R

R2 = (S2-h2)

R2 = (60/R)2- 82

R4 + 64R2 - 3600 = 0

r2 + 64r - 3600 = 0         ... where r = R2

r = [-64±(4096+4x3600)]/2

= [-64±136]/2

Hence r = 36, and R = 6 m.

Step-by-step explanation:

Similar questions