If a cos + b sin = 4and a sin -b cos = 3, then find the value of a2 + b2
Answers
Answer :
a² + b² = 25
Solution :
• Given : a·cos∅ + b·sin∅ = 4
a·sin∅ – b·cos∅ = 3
• To find : a² + b² = ?
We have ,
a·cos∅ + b·sin∅ = 4
Now ,
Squaring both the sides , we get ;
=> (a·cos∅ + b·sin∅)² = 4²
=> (a·cos∅)² + (b·sin∅)² + 2·(a·cos∅)·(b·sin∅) = 16
=> a²·cos²∅ + b²·sin²∅ + 2ab·sin∅·cos∅ = 16 --------(1)
Also ,
We have ,
a·sin∅ – b·cos∅ = 3
Now ,
=> (a·sin∅ – b·cos∅)² = 3²
=> (a·sin∅)² + (b·cos∅)² – 2·(a·sin∅)·(b·cos∅) = 9
=> a²·sin²∅ + b²·cos²∅ – 2ab·sin∅·cos∅ = 9 ------(2)
Now ,
Adding eq-(1) and (2) , we get ;
=> a²·cos²∅ + b²·sin²∅ + 2ab·sin∅·cos∅ + a²·sin²∅ + b²·cos²∅ – 2ab·sin∅·cos∅ = 16 + 9
=> a²·cos²∅ + b²·sin²∅ + a²·sin²∅ + b²·cos²∅ = 25
=> a²(sin²∅ + cos²∅) + b²(sin²∅ + cos²∅) = 25
=> (sin²∅ + cos²∅)·(a² + b²) = 25
=> 1·(a² + b²) = 25
=> a² + b² = 25