Math, asked by ZenithKrueger, 10 months ago

If a cosθ - b sinθ = c, prove that a sinθ + b cosθ = ±\sqrt{a^{2} + {b^{2} - {c^{2}}

Answers

Answered by roshan3496
1

Answer:

hope you understand ❤️ please make brainlist

Attachments:
Answered by silentlover45
9

\underline\mathfrak\pink{Given:-}

  • \: \: \: \: \: \leadsto \: \: a \: Cos \theta \: - \: b \: Sin \theta \: \: = \: \: C

\large\underline\mathfrak\pink{To \: Proved:-}

  • \: \: \: \: \: \: \: a \: Sin \theta \: - \: b \: Cos \theta \: \: = \: \: \pm \: \sqrt{{a}^{2} \: + \: {b}^{2} \: - \: {c}^{2}}

\large\underline\mathfrak\pink{Solutions:-}

\: \: \: \: \: \leadsto \: \: {(a \: Cos \theta \: - \: b \: Sin \theta)}^{2} \: + \:   {(a \: Sin \theta \: + \: b \: Cos \theta)}^{2} \: \: = \: \: {(a \: Cos \theta)}^{2} \: + \: {(b \: Sin \theta)}^{2} \: -  \: {2ab \: Sin \theta \: Cos \theta} \: + \: \: {(a \: Sin \theta)}^{2} \: + \: {(b \: Cos \theta)}^{2} \: + \: {2ab \: Sin \theta \: Cos \theta}

\: \: \: \: \: \leadsto \: \: {(C)}^{2} \: + \: {(a \: Sin \theta \: + \: b \: Cos \theta)}^{2} \: \: = \: \: {(a \: Cos \theta)}^{2} \: + \: {(b \: Sin \theta)}^{2} \: + \: \: {(a \: Sin \theta)}^{2} \: + \: {(b \: Cos \theta)}^{2}

\: \: \: \: \: \leadsto \: \: {(C)}^{2} \: + \: {(a \: Sin \theta \: + \: b \: Cos \theta)}^{2} \: \: = \: \: {a}^{2} \: {({Sin}^{2} \theta \: + \: {Cos}^{2} \theta)} \: + \: {b}^{2} \: {({Cos}^{2} \theta \: + \: {Sin}^{2} \theta)}

\: \: \: \: \: \leadsto \: \: {(C)}^{2} \: + \: {(a \: Sin \theta \: + \: b \: Cos \theta)}^{2} \: \: = \: \: {a}^{2} \: +  \: {b}^{2}

\: \: \: \: \: \leadsto \: \: {(a \: Sin \theta \: + \: b \: Cos \theta)}^{2} \: \: = \: \: {a}^{2} \: + \: {b}^{2} \: - \: {c}^{2}

\: \: \: \: \: \leadsto \: \: a \: Sin \theta \: - \: b \: Cos \theta \: \: = \: \: \pm \: \sqrt{{a}^{2} \: + \: {b}^{2} \: - \: {c}^{2}}

\: \: \: \: \: Hence \: \: Proved

\large\underline{More \: Information:-}

  • \: \: \: \: \: {Sin}^{2} \theta \: + \: {Cos}^{2} \theta \: \: = \: \: {1}

  • \: \: \: \: \: {({a} \: + \: {b})}^{2} \: \: = \: \: {a}^{2} \: + \: {b}^{2} \: + \: {2ab}

  • \: \: \: \: \: {({a} \: - \: {b})}^{2} \: \: = \: \: {a}^{2} \: + \: {b}^{2} \: - \: {2ab}

__________________________________

Similar questions