If a cos theta + b sin theta =c then prove that bcos theta - a sin theta = √a^2+b^2-c^2
Answers
Answered by
2
Answer:
solved
Step-by-step explanation:
A cos - B sin = C
Squaring both Sides
=> (A cos - B sin)² = C²
=> A²Cos² + B²Sin² - 2ABCosSin = C²
=> A²Cos² + B²Sin² - C² = 2ABCosSin - Eq 1
now Let
A sin + B cos = L
L = A sin + B cnos
Squaring both Sides
L² = (A sin + B cos)²
L² = A²Sin² + B²cos² + 2ABSinCos
putting value of 2ABCosSin from eq 1
L² = A²Sin² + B²cos² + A²Cos² + B²Sin² - C²
L² = A²(Sin² + Cos²) + B²(Cos² + Sin²) - C²
as we know that Sin² + Cos² = 1
L² = A² + B² - C²
Square rooting both sides
L = ±√(A² + B² - C²)
A sin + B cos = ±√(A² + B² - C²)
Similar questions
Physics,
5 months ago
Chinese,
5 months ago
English,
5 months ago
Math,
10 months ago
English,
10 months ago
CBSE BOARD X,
1 year ago
Social Sciences,
1 year ago