If a=cos theta+isin theta find the value of (1+a)/(1-a)
Answers
Answered by
5
Answer:
icotθ/2
Step-by-step explanation:
a = cosθ + i sinθ
Now 1+a/1-a
=> 1+ cosθ + i sinθ / 1 - cosθ - i sinθ)
//multiply numerator and denominator by 1 - cosθ + i sinθ
=> (1+ cosθ + i sinθ)(1 - cosθ + i sinθ)/(1 - cosθ + i sinθ)(1 - cosθ - i sinθ)
=> [1 + cosθ + i sinθ - cosθ - cos²θ - isinθcosθ+isinθ+isinθcosθ+(isinθ)²] / [(1-cosθ)² - (isinθ)²]
=> [1+2isinθ-cos²θ-sin²θ] / {1-2cosθ+cos²θ-(i²sin²θ)}
=> (1+2isinθ- (cos²θ+sin²θ)] / {1-2cosθ+cos²θ+ sin²θ]
=> (1+2isinθ-1)/(1-2cosθ+1)
=> 2isinθ/(2-2cosθ)
=> isinθ/(1-cosθ)
//remeber sin2A = 2sinAcosA
=> i(2sinθ/2cosθ/2)/(2sin²θ/2)
=> (icosθ/2)/(sinθ/2)
=> icotθ/2.
Similar questions