Math, asked by mhatekr, 1 year ago

if a cos3 theta+3 sin2theta costheta =m and a sin3theta+ 3a sintheta cos2theta = n , then prove that (m+n)2/3 + (m-n)2/3 =2a2/3

Answers

Answered by paidimaneesh
5

m + n = acos3x + 3a cosx sin2x + asin3x + 3a cos2xsinx = a(sinx + cosx)3


(m + n)2/3 = a2/3 (sinx + cosx)2


m – n = acos3x + 3a cosx sin2x –  asin3x –  3a cos2xsinx = a(cosx + sinx)3


 


(m –  n)2/3 = a2/3 (cosx –  sinx)2


(m + n)2/3 + (m –  n)2/3 = a2/3 (sinx + cosx)2+ a2/3 (cosx –  sinx)2 =


a2/3[(sinx + cosx)2 + (cosx –  sinx)2] = 2a2/3


 m + n = acos3x + 3a cosx sin2x + asin3x + 3a cos2xsinx = a(sinx + cosx)3


(m + n)2/3 = a2/3 (sinx + cosx)2


m – n = acos3x + 3a cosx sin2x –  asin3x –  3a cos2xsinx = a(cosx + sinx)3


 


(m –  n)2/3 = a2/3 (cosx –  sinx)2


(m + n)2/3 + (m –  n)2/3 = a2/3 (sinx + cosx)2+ a2/3 (cosx –  sinx)2 =


a2/3[(sinx + cosx)2 + (cosx –  sinx)2] = 2a2/3


 

Similar questions