Math, asked by komalpapadas12, 6 months ago

If A = diag (1,-1, 2), B = diag (2, 3,-1) then 3A +4B​

Answers

Answered by pulakmath007
13

SOLUTION

GIVEN

  • A = diag (1,-1, 2)

  • B = diag (2, 3,-1)

TO DETERMINE

3A +4B

CONCEPT TO BE IMPLEMENTED

Diagonal Matrix :

A square matrix is said to be a diagonal matrix if the elements other than the diagonal elements are zero

The diagonal matrix

 \sf{(d_{ij})_{n,n }}

 \sf{is  \: denoted  \: by  \:  \: diag(d_{11},d_{12}, ....,d_{nn})}

EVALUATION

Here it is given that

A = diag (1,-1, 2)

B = diag (2, 3,-1)

A = \displaystyle\begin{vmatrix} 1 & 0 & 0\\ 0 &  - 1 &  0 \\ 0 & 0 &  2 \end{vmatrix}

B  = \displaystyle\begin{vmatrix} 2 & 0 & 0\\ 0 &  3 &  0 \\ 0 & 0 &   - 1 \end{vmatrix}

 \therefore \: 3A  = \displaystyle\begin{vmatrix} 3 & 0 & 0\\ 0 &  - 3 &  0 \\ 0 & 0 &  6 \end{vmatrix}

 \therefore \: 4B  = \displaystyle\begin{vmatrix} 8 & 0 & 0\\ 0 &  12 &  0 \\ 0 & 0 &   - 4 \end{vmatrix}

Hence 3A + 4B

 = \displaystyle\begin{vmatrix} 3 & 0 & 0\\ 0 &  - 3 &  0 \\ 0 & 0 &  6 \end{vmatrix}   + \displaystyle\begin{vmatrix} 8 & 0 & 0\\ 0 &  12 &  0 \\ 0 & 0 &   - 4 \end{vmatrix}

 = \displaystyle\begin{vmatrix} 11 & 0 & 0\\ 0 &  9 &  0 \\ 0 & 0 &   2 \end{vmatrix}

= diag (11 , 9 , 2)

FINAL ANSWER

3A + 4B = = diag (11 , 9 , 2)

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if A= diag (4,2,1) then det A is equal to

https://brainly.in/question/31715604

2. A square matrix is said to be ------ if all its non diagonal elements are zero.

https://brainly.in/question/29052566

Similar questions