Math, asked by aruneazhumalai2004, 11 months ago

If a function satisfies a relation 2f(x) + f(1/x) = -x then f(2) equals.....​

Attachments:

Answers

Answered by theking20
0

Given,

A function satisfying the relation 2f(x) + f(1/x) = -x

To Find,

The value of f(2)

Solution,

Putting x = 2 in given function

2f(2) + f(1/2) = -2

f(1/2) = -2-2f(2)

Now, putting =1/2

2f(1/2)+f(2)=-1/2

-2-2f(2)+f(2) = -1/2

-3/2 = f(2)

Hence, the value of f(2) is equal to -3/2.

Answered by mdimtihaz
0

Given: 2f(x)+f(\frac{1}{x})=-x\\

Substitute x equals  2,

2f(2)+f(\frac{1}{2})=-2\\  

f(\frac{1}{2})=-2-2f(2)........(1)

Substitute x equals to \frac{1}{2},

2f(\frac{1}{2})+f(\frac{1}{\frac{1}{2}})=-2\\

2f(\frac{1}{2})+f(2)=-2\\

f(2)=-2-2f(\frac{1}{2}) ........(2)

Substitute f(\frac{1}{2}) value from eq (1) to eq(2),

f(2)=-2-2(-2-2f(2))\\f(2)=-2+4+4f(2)\\f(2)=2+4f(2)\\3f(2)=-2\\f(2)=\frac{-2}{3}

Similar questions