Math, asked by Akanksha2406, 1 year ago

prove that if x and y are odd positive integers then x square + y square is even but not divisible by 4​

Answers

Answered by shabdita70
0

because square are same

Answered by zahabm9898
0

Let the two odd positive numbers be x = 2k + 1 a nd y = 2p + 1 Hence x2 + y2 = (2k + 1)2 + (2p + 1)2 = 4k2 + 4k + 1 + 4p2 + 4p + 1 = 4k2 + 4p2 + 4k + 4p + 2 = 4(k2 + p2 + k + p) + 2 Clearly notice that the sum of square is even the number is not divisible by 4 Hence if x and y are odd positive integers, then x2 + y2 is even but not divisible by 4

Similar questions