If A > 0, B > 0 and A + B = pi/3, then the maximum value of tan A tan B is .....
Answers
Answered by
0
Answer:
Step-by-step explanation:
B = pi/3 - A
so that tan(B) = tan(pi/3 - A)
= (tan(pi/3) - tan(A))/(1 + tan(pi/3)tan(A))
=(sqrt(3) - tan(A))/(1 + sqrt(3)tan(A))
y = (sqrt(3)tan(A) - tan^2(A))/(1 + sqrt(3)tan(A))
max y when dy/dA = 0
dy/dA = [(sqrt(3)sec^2(A) - 2tan(A)sec^2(A))(1 + sqrt(3)tan(A)) - sqrt(3)sec^2(A)(sqrt(3)tan(A) - tan^2(A))]/(1 + sqrt(3)tan(A))^2
etc etc
Similar questions