Math, asked by Mrkerhin6970, 10 months ago

If a>0 then then root of a+ root of a + root of a+........infinity=......

Answers

Answered by saounksh
3

ANSWER

  •  \frac{ 1 + \sqrt{ 1 + 4a}}{2}

EXPLAINATION

GIVEN

  •  \sqrt{a + \sqrt{a + \sqrt{a +.....∞}}}

  • a > 0

ᴛᴏ ғɪɴᴅ

  • Value of given expression

ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ

Let

 \sqrt{a + \sqrt{a + \sqrt{a +..∞}}}=y, y>0

 ⇒\sqrt{a + y}=y

 ⇒ a + y =y²

 ⇒ y² - y - a = 0

 ⇒ y = \frac{ 1 ± \sqrt{ 1² - 4\times 1\times (-a)}}{2\times 1}

 ⇒ y = \frac{ 1 ± \sqrt{ 1 + 4a}}{2}

Since  y>0

 ⇒ y = \frac{ 1 + \sqrt{ 1 + 4a}}{2}

Answered by NirmalPandya
0

Correct question: If a>0 then, \sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+.......}} } } =?

Answer:

The value of the expression is \frac{1+\sqrt{5} }{2}.

Given,

An expression: \sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+.......}} } }.

To Find,

The value of the expression.

Solution,

The method of finding the value of the expression is as follows -

Let y=\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+.......}} } }.

Then, y^2=a+\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+.......}} } }

⇒  y^2=a+y [Since y=\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+.......}} } }]

⇒  y^2-y-a=0

This is a quadratic equation. So we can solve it by the following method.

y=\frac{-(-1)+\sqrt{(-1)^2-4*1*(-1)} }{2*1} =\frac{1+\sqrt{5} }{2} or, y=\frac{-(-1)-\sqrt{(-1)^2-4*1*(-1)} }{2*1} =\frac{1-\sqrt{5} }{2}.

But \frac{1-\sqrt{5} }{2} < 0, so y\neq\frac{1-\sqrt{5} }{2}.

So, y=\frac{1+\sqrt{5} }{2}.

Hence, the value of the expression is \frac{1+\sqrt{5} }{2}.

#SPJ2

Similar questions