Math, asked by IAmAmritesh1051, 1 year ago

If a=i+2j-3k b=3i-j+2k then show that a+b a-b are mutually perpendicular

Answers

Answered by MaheswariS
14

\textbf{Concept:}

\text{Two vectors }\overrightarrow{a}\text{ and }\overrightarrow{b}\text{ are perpendicular if and only if }\overrightarrow{a}.\overrightarrow{b}=0

\textbf{Given:}

\overrightarrow{a}=\overrightarrow{i}+2\overrightarrow{j}-3\overrightarrow{k}

\overrightarrow{b}=3\overrightarrow{i}+\overrightarrow{j}+2\overrightarrow{k}

\implies\,\overrightarrow{a}+\overrightarrow{b}=4\overrightarrow{i}+3\overrightarrow{j}-\overrightarrow{k} and

\implies\,\overrightarrow{a}-\overrightarrow{b}=-2\overrightarrow{i}+\overrightarrow{j}-5\overrightarrow{k}

(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})=(4\overrightarrow{i}+3\overrightarrow{j}-\overrightarrow{k}).(-2\overrightarrow{i}+\overrightarrow{j}-5\overrightarrow{k})

(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})=4(-2)+3(1)+(-1)(-5)

\implies(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}-\overrightarrow{b})=-8+3+5=0

\therefore\overrightarrow{a}\perp\overrightarrow{b}

That is,they are mutually perpendicular to each other

Answered by subhashnidevi4878
5

Answer:

Step-by-step explanation:

Given data, \vec{a} = i + 2j -3k , \vec{b} = 3i-j+2k

Two vectors to be perpendicular if,

\vec{a}\times\vec{b} = 0

\vec{a} + \vec{b} = (i + 2j -3k) + (3i-j+2k)

[tex]\vec{a} + \vec{b} = (i + 2j -3k) + (3i-j+2k)

                                   = (4i + j -k)

\vec{a} - \vec{b} = (i+2j-3k) - (3i - j + 2k)

                              =(- 2i + 3j - 5k)

(\vec{a} + \vec{b})\times(\vec{a} - \vec{b}) = (4i + j -k)\times(- 2i + 3j - 5k)

= - 8 + 3 + 5

= 0

It means\vec{a}and \vec{b}is perpendicular.

Similar questions