Physics, asked by aachalm2004, 8 months ago

If a=i+3j-k and b=2i-j+k determine unit vector parallel to a×b also find sine of angle between a and b

Answers

Answered by shadowsabers03
6

Given,

  • \vec{\sf{a}}=\sf{\hat i+3\hat j-\hat k}
  • \vec{\sf{b}}=\sf{2\hat i-\hat j+\hat k}

The cross product of these two vectors is given by,

\longrightarrow\vec{\sf{a}}\times\vec{\sf{b}}=\left|\begin{array}{ccc}\sf{\hat i}&\sf{\hat j}&\sf{\hat k}\\\sf{1}&\sf{3}&\sf{-1}\\\sf{2}&\sf{-1}&\sf{1}\end{array}\right|

\longrightarrow\vec{\sf{a}}\times\vec{\sf{b}}=\sf{(3-1)\,\hat i-(1+2)\,\hat j+(-1-6)\,\hat k}

\longrightarrow\vec{\sf{a}}\times\vec{\sf{b}}=\sf{2\,\hat i-3\,\hat j-7\,\hat k}

The magnitude of this vector is,

\longrightarrow\left|\vec{\sf{a}}\times\vec{\sf{b}}\right|=\left|\sf{2\,\hat i-3\,\hat j-7\,\hat k}\right|

\longrightarrow\left|\vec{\sf{a}}\times\vec{\sf{b}}\right|=\sf{\sqrt{2^2+(-3)^2+(-7)^2}}

\longrightarrow\left|\vec{\sf{a}}\times\vec{\sf{b}}\right|=\sf{\sqrt{4+9+49}}

\longrightarrow\left|\vec{\sf{a}}\times\vec{\sf{b}}\right|=\sf{\sqrt{62}}

Hence the unit vector parallel to \vec{\sf{a}}\times\vec{\sf{b}} is,

\longrightarrow\mathsf{\hat a}\times\mathsf{\hat b}=\dfrac{\vec{\sf{a}}\times\vec{\sf{b}}}{\left|\vec{\sf{a}}\times\vec{\sf{b}}\right|}

\longrightarrow\underline{\underline{\mathsf{\hat a}\times\mathsf{\hat b}=\mathsf{\dfrac{1}{\sqrt{62}}}\left(\sf{2\,\hat i-3\,\hat j-7\,\hat k\right)}}}

Magnitude of each vector \vec{\sf{a}} and \vec{\sf{b}} is,

\longrightarrow\sf{a}=\left|\hat i+3\hat j-\hat k\right|

\longrightarrow\sf{a}=\sqrt{1^2+3^2+(-1)^2}

\longrightarrow\sf{a}=\sqrt{1+9+1}

\longrightarrow\sf{a}=\sqrt{11}

And,

\longrightarrow\sf{b}=\left|2\hat i-\hat j+\hat k\right|

\longrightarrow\sf{b}=\sqrt{2^2+(-1)^2+1^2}

\longrightarrow\sf{b}=\sqrt{4+1+1}

\longrightarrow\sf{b}=\sqrt{6}

Let \theta be the angle between \vec{\sf{a}} and \vec{\sf{b}}.

Sine of this angle is given by,

\longrightarrow\left|\vec{\sf{a}}\times\vec{\sf{b}}\right|=\sf{ab\sin\theta}

\longrightarrow\sin\theta=\dfrac{\left|\vec{\sf{a}}\times\vec{\sf{b}}\right|}{\sf{ab}}

\longrightarrow\sin\theta=\dfrac{\sf{\sqrt{62}}}{\sf{\sqrt{11}\times\sqrt{6}}}

\longrightarrow\sin\theta=\dfrac{\sf{\sqrt{62}}}{\sf{\sqrt{66}}}

\longrightarrow\underline{\underline{\sin\theta=\sf{\sqrt{\dfrac{31}{33}}}}}

Answered by vilendranaphade04
0

Hope it help you guys...!!!?✌️✌️

Attachments:
Similar questions